Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jian Zhang, Yao Kang, Yi-Hang Wen, Zhao-Ji Li, Ye-Yan Qin and Yuan-Gen Yao*

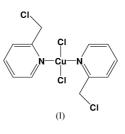
The State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: yyg@ms.fjirsm.ac.cn

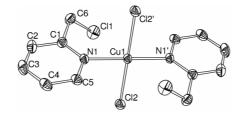
Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.006 Å R factor = 0.038 wR factor = 0.110 Data-to-parameter ratio = 14.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


Dichlorobis[2-(chloromethyl)pyridine]copper(II)

In the title compound, $[CuCl_2(C_6H_7ClN)_2]$, the Cu atom, occupying a special position on an inversion center, has a square-planar coordination formed by two Cl ligands [Cu-Cl = 2.2719 (9) Å] and two N atoms of *o*-chloromethylpyridine ligands [Cu-N = 2.008 (2) Å and $Cl-Cu-N = 88.65 (8)^{\circ}]$. The Cl atoms of the chloromethyl groups effectively shield the axial positions of the Cu atom $[Cu \cdot \cdot Cl = 3.000 (1) \text{ Å}, Cl-Cu \cdot \cdot Cl = 90.7 (3)^{\circ}$ and $N-Cu \cdot \cdot Cl = 74.8 (8)^{\circ}]$.


Received 3 March 2004 Accepted 13 April 2004 Online 24 April 2004

Comment

Research into transition metal complexes has been rapidly expanding because of their fascinating structural diversity, as well as their potential applications as functional materials and enzymes (Noro *et al.*, 2000; Yaghi *et al.*, 1998). Some organic *N*-donors, such as bipyridine or related species, are often chosen for preparation of various complexes (Hagrman *et al.*, 1999). In the present paper, we report the synthesis and crystal structure of a mononuclear copper(II) complex, (I).

The crystal structure of (I) is built of discrete molecules of the complex (Fig. 1), the Cu atom occupying a special position on a crystallographic inversion center. Atom Cu1 has a typical square-planar coordination formed by two Cl ligands and two N atoms of *o*-chloromethylpyridine ligands [Cu1-Cl2 = 2.2719 (9) Å, Cu1-N1 = 2.008 (2) Å and Cl2-Cu1-N1 = 88.65 (8)°]. The Cl atoms of the chloromethyl groups occupy positions above and below the coordination plane of atom Cu1 at a distance of 3.000 (1) Å from the metal atom [the Cl1...Cu1-Cl2 and Cl1...Cu1-N1 angles are 90.74 (3) and 74.84 (8)°, respectively]. Thus, Cl1 and Cl1ⁱ [symmetry code:

Figure 1

The structure of (I). Displacement ellipsoids are drawn at the 30% probability level. The H atoms have been omitted. [Symmetry code: (i) $\frac{1}{2} - x, \frac{1}{2} - y, -z$.]

Printed in Great Britain - all rights reserved

© 2004 International Union of Crystallography

metal-organic papers

(i) $\frac{1}{2} - x, \frac{1}{2} - y, -z$] effectively shield the axial positions in the coordination sphere of the Cu1 atom.

Experimental

To a DMF solution (10 ml) of $CuCl_2 \cdot 2H_2O$ (0.085 g, 0.5 mmol), 2chloromethylpyridine (0.128 g, 1 mmol) was added. The mixture was stirred for about 30 min and then filtered. Well shaped crystals were obtained from the mother liquor by slow evaporation at room temperature over a period of several days.

Crystal data

$\begin{bmatrix} \text{CuCl}_2(\text{C}_{12}\text{H}_1\text{C}\text{C}_1\text{2}\text{N}_2) \end{bmatrix}$ $M_r = 389.58$ Monoclinic, C2/c a = 15.292 (2) Å b = 7.7844 (11) Å c = 14.306 (2) Å $\beta = 117.311 \text{ (2)}^{\circ}$ $V = 1513.2 \text{ (4) Å}^3$ Z = 4	$D_x = 1.710 \text{ Mg m}^{-3}$ Mo K\$\alpha\$ radiation Cell parameters from 1734 reflections $\theta = 3.0-25.0^{\circ}$ $\mu = 2.13 \text{ mm}^{-1}$ T = 293 (2) K Prism, blue $0.50 \times 0.30 \times 0.22 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.435, T_{max} = 0.626$ 2252 measured reflections	1324 independent reflections 1187 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 25.0^{\circ}$ $h = -13 \rightarrow 18$ $k = -7 \rightarrow 9$ $l = -16 \rightarrow 17$
D C ·	

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.110$ S = 1.081324 reflections 89 parameters H-atom parameters constrained

$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0661P)^{2} + 3.161P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.74 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.69 \text{ e} \text{ Å}^{-3}$ Extinction correction: *SHELXTL* Extinction coefficient: 0.0122 (11)

Table 1Selected geometric parameters (Å, °).

Cu1-N1	2.008 (2)	Cu1···Cl1	3.0003 (10)
Cu1-Cl2	2.2719 (9)		
N1-Cu1-Cl2	88.65 (8)	Cl2-Cu1···Cl1	90.74 (3)
$N1 - Cu1 \cdot \cdot \cdot Cl1$	74.84 (8)		

H atoms were placed in calculated positions (C-H = 0.93-0.97 Å) and included in the refinement in the riding-model approximation, with $U_{\rm iso}(\rm H) = 1.2U_{\rm eq}(\rm carrier atom)$.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SMART* and *SAINT* (Siemens, 1994); data reduction: *SAINT* and *XPREP* in *SHELXTL* (Siemens, 1994); program(s) used to solve structure: *SHELXTL*; program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was financially supported by the NNSF of China (No. 20173063), the State Key Basic Research and Development Plan of China (001CB108906), and the NNSF of Fujian Province (E0020001).

References

- Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed.. 38, 2638–2684.
- Noro, S., Kitagawa, S., Kondo, M. & Seki, K. (2000). Angew. Chem. Int. Ed. 39, 2081–2084.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Siemens (1994). SAINT and SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Yaghi, O. M., Li, H., David, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.